ANS-ND

Automated Nematode Screening for Neurodegenerative Diseases

ABOUT THE PROJECT

Abstract:

Ageing is the major risk factor for neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. The graying of the population has been accompanied by a continual increase in the prevalence of neurodegeneration amongst the elderly and is now one of the greatest challenges that healthcare and research has to tackle. In this project, we propose to experimentally develop an integrated and automated solution for screening drugs and genetic interventions for neurodegenerative diseases, using the nematode C. elegans and ageing-related data. The system will include: 1) a network-based, integrative and predictive bioinformatics method for short-listing genetic targets of interest, and 2) a low-cost, modular, automated video-recording platform for healthspan screening in worms. Additionally, we also propose the implementation of a gene activation system that would complement the existing genetic tools for investigating gene function and drug screening in worms, by creating a CRISPR-based overexpression system with the flexibility of RNA interference approaches. Lastly, we propose to validate the developed system by monitoring predicted interventions, both using the automated platform and by traditional lab methods.

Project objectives:

The overall goal of the project is to build an automated system for phenotypic screening in nematodes which will be used to test predicted targets for neurodegenerative diseases. More specifically, the objectives are: 1) Predicting using a systems biology approach molecular targets relevant to ageing and neurodegeneration; 2) Building a low-cost, modular, video-monitoring system for nematodes, capable of simultaneously assaying lifespan and healthspan features for a large number of plates with worm cultures; 3) Expanding the current capacity of molecular interventions in worms with a method that allows the overexpression of specific targets, controlled through food-delivered dCAS9 CRISPR guides; and 4) Testing and validating the developed system by monitoring predicted interventions and comparing with traditional lab methods (manually culturing worms and observing their phenotype).

Estimated outcomes:

Upon the implementation of the project, the following outcomes should be achieved: 1) the group will have a functional prototype system (at the experimental proof of concept level) that allows with minimal human interventions to survey the lifespan and healthspan of multiple worm culture plates; 2) the group will have a validated protocol to overexpress genes in C. elegans using CRISPR; 3) the group will have evaluated phenotype changes for several interventions in relation to neurodegeneration.